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This article considers replicability of the performance of predic-
tors across studies. We suggest a general approach to investigat-
ing this issue, based on ensembles of prediction models trained
on different studies. We quantify how the common practice of
training on a single study accounts in part for the observed chal-
lenges in replicability of prediction performance. We also investi-
gate whether ensembles of predictors trained on multiple studies
can be combined, using unique criteria, to design robust ensemble
learners trained upfront to incorporate replicability into different
contexts and populations.
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Science is facing an important debate about both reproducibil-
ity and replicability of results (1, 2). The dialogue on scientific

replicability has focused predominantly on whether study results,
such as inferences about hypotheses, are confirmed in a repeated
study (3, 4). In this article, we shift the focus to the equally impor-
tant but less commonly examined issue of replicability of the per-
formance of predictors. Prediction algorithms developed using
statistical and machine-learning techniques have been extraor-
dinarily successful and are routinely evaluated in a variety of
studies. Yet they have been largely rooted in methodologies and
theories based on a single training dataset and often rely on cross-
validation to approximate out-of-study performance. It is well
established that cross-validation provides optimistic assessments
of prediction ability compared with a cross-study assessment (5–
9). Recent work in genomics also suggests that statistical learning
strategies that optimize within-study cross-validation metrics are
not necessarily the same as those that optimize cross-study valida-
tion metrics (8). Importantly, the model complexity of predictors
whose performance is replicable can be different (often far lower)
from that of predictors successful at cross-validation (10).

Our work is motivated by precision medicine, where the use
of machine learning remains both essential and controversial.
Tests such as Mammaprint (11) and OncotypeDX (12), which
are Food and Drug Administration approved for clinical use,
originated from such predictors. One of the most important mile-
stones in translating a genomic prediction algorithm from bench
to bedside is establishing the generalizability of its performance
beyond the originating study (13). In what settings and for which
patient populations will the algorithms perform as expected?
Typically, answers come from training and validating on either
one or a small number of patient datasets collected via different
study protocols. Variation in measurement and data collection
technologies, study populations, and sampling designs, as well
as technological artifacts, inappropriate training strategies, and
execution errors can have substantial impact on the replicability
of predictions (5, 14, 15).

A general approach to investigating this issue is training on
multiple studies and examining ensembles of prediction mod-
els, each trained on a different study. With multistudy ensembles
we can quantify how the heterogeneity observed across studies
contributes to the observed challenges in replicability of predic-
tion performance and critically evaluate the limitations of within-
study evaluations, such as cross-valuation, in training replicable
predictors (8).

It is increasingly common to have available multiple datasets
which measure the same outcome and many of the same covari-
ates (16, 17). It is also important that these be simultaneously and
systematically considered. Here we begin to investigate whether
ensembles of prediction models trained on multiple studies can
be used to design robust prediction algorithms that are trained
upfront to incorporate replicability to different contexts and pop-
ulations. Options for training predictors in the multistudy setting
include merging all datasets together (thus ignoring heterogene-
ity) and directly modeling heterogeneity (e.g., via meta-analysis).
As an alternative, we examine the use of weighted ensem-
bling. We propose a range of weighting strategies that reward
cross-study performance among predictors in the ensemble. We
explore strategies motivated by decision theoretic criteria applied
to hypothetical future studies, as well as heuristic strategies.

Although ensemble learning is a common paradigm (18–20),
the role of multiple studies and their heterogeneity in optimal
ensembling strategies has not been explored. Here, we outline
a general approach and investigate the characteristics of several
implementations in simulations and in a comprehensive collec-
tion of datasets including gene expression and survival in patients
with ovarian cancer. We ask whether and in what scenarios
training ensembles with heterogeneous datasets can improve the
generalizability and out-of-sample performance of the resulting
predictors and increase replicability.

Results
Cross-Study Learners. The general architecture of a cross-study
learner (CSL) is in Fig. 1. CSLs are uniquely specified by three
choices: (i) a study subsetting strategy, (ii) one or more single-
study learners (SSLs), and (iii) a combination approach. Sub-
setting is concerned with both inclusion and exclusion criteria
for candidate studies and the definition of groups of studies
with similar distributions of predictors and outcomes. An SSL
can be any algorithm that produces a prediction model using a
single study. Combination approaches use multiple prediction
models to deliver a single prediction rule applicable to exter-
nal validation studies. Here we investigate unique combination
approaches designed to enhance replicability. This approach
bypasses the potentially complex task of explicitly modeling
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Fig. 1. The architecture of a CSL, illustrated with six studies divided into
three subsets, two SSLs, and general weights.

variation in the relationship between Y and X across datasets.
Another important property of this architecture is that it can
support cross-study learning when the training data cannot be
merged, because of either access restrictions or size limitations.

For a very simple illustration of Fig. 1, we could choose CART
(21) and linear regression as the two SSLs, form three sub-
sets of studies, train both CART and regression on each subset,
and combine the predictions by simple averaging. The resulting
ensemble algorithm is a CSL.

More generally, consider L learners (SSLs), K training, and V
validation datasets, within which we have a comparable outcome
Yk of size nk and matched sets of predictors Xk of dimension
nk ×m , k =1, . . . ,K +V . Our goal is to make predictions in
the V validation datasets, using the K datasets for training. Let
the prediction function trained on dataset k using learner l be
Ŷ l

k (x), where x is an m-dimensional point in the predictor space.
We also use Ŷ l

k (X) to denote predictions made at n points rep-
resented by the n ×m matrix X. A linear CSL with weights wlk

has the form

Ŷ (x)=
L∑

l=1

K∑
k=1

wlk Ŷ
l
k (x). [1]

If K =1, we fall back to standard ensemble learning, while we
can have CSLs with L=1.

We envision two general strategies for the combination step.
A heuristic approach is to define weights that incorporate cross-
study performance. For example, we conjecture that cross-study
validation offers a better estimate of the generalizability of a
predictor and that weighting by measures of training-set cross-
study performance will yield better performance across a test set
of studies. A more formal approach is to pose the combination
problem from a decision theoretic angle and use utility functions
that reflect expected performance in future studies. A CSL is
then evaluated on the validation datasets using a decision the-
oretic criterion:

U(CSL)=
V∑

k=K+1

λkU (Ŷ (Xk ),Yk ). [2]

U is an expected utility function quantifying the quality of pre-
dictions (22), such as negative mean squared error, and λk s allow
for different validation studies to be weighted differently.

The definition of what constitutes a study depends on the con-
text and can be chosen to address questions about generaliz-
ability to desired target populations. In Fig. 1, six studies are
available, but they are clustered into K =3 subgroups, perhaps
because the differences across these groups are important sci-
entifically, and capturing this variation helps with future out-
of-training-samples use. Other choices are available to control
prediction properties. Subgroups may overlap; for example, we
could consider the power set of a given collection of indepen-
dent studies. Alternatively, we could use resampling to gener-
ate a set of artificial studies for each of the observed ones and
build a CSL on the full collection. In Fig. 1 we could generate
100 studies for each of the 6 initial ones and build a CSL with
K =600.

Simulations. We next describe results of simulations that begin
to explore the many options opened by the architecture of Fig.
1 and to evaluate the performance of CSLs. Following Friedman
(23), we vary the outcome generation function and use differing
error distributions. Similarly to the SimulatorZ Bioconductor
package (24), we use predictor profiles resampled from real data,
in our case CuratedOvarianData so that the predictors have a
realistic distribution. We then generate the outcomes given the
predictors, using known linear relations. We are interested in
modeling variation across studies, so we perturb the coefficients
across datasets within a uniform window. Varying the size of this
window across sets of simulations allows for easy comparisons of
performance across different degrees of study heterogeneity. We
report results based on a small set of features for prediction here
and consider larger sets in SI Appendix, section 2.2.

We consider seven choices for the SSL box in Fig. 1:
(i) Lasso, (ii) CART, (iii) Neural Network, (iv) Mas-o-Menos, (v)
Random Forests, (vi) model-based boosting, and (vii) the union
of 1 through 4 (see Materials and Methods for implementation
details). These learners are different, widely used, and straight-
forward to apply out of the box. While they are far from exhaust-
ing the set of useful possibilities, they can provide an informative
initial exploration.

For each of the SSLs above, we form a CSL using five
alternative choices for weights: simple average of predictions
from each SSL (“Avg”), average weighted by study sample size
(“n-Avg”), average weighted by cross-study performance (“CS-
Avg”), stacked regression (“Reg-s”), and averages of study-
specific regression weights (“Reg-a”). The last three reward
replicability. The regression weights are motivated by optimality
under squared error loss. In this section they include intercept
terms and do not normalize the weights. Further details are in
Materials and Methods. As a baseline comparator, we merge all
studies and learn a single SSL (the merged learner).

Fig. 2 summarizes the results. The most important compar-
ison is between the merged learner and the rest, who are all
CSLs. At small perturbation levels, the merged learner performs
comparably to CSLs and wins only when the SSL is the neu-
ral net. As study heterogeneity increases, the merged learner’s
performance advantage deteriorates. CSLs can generally provide
robust learning without losing performance even when study het-
erogeneity is limited. On the other hand, the margin of improve-
ment from adopting a CSL at higher heterogeneity can be
substantial.

Comparing CSL weighting strategies, fixed weights (Avg and
n-Avg) do well, but are always inferior to one of the weight-
ing schemes that reward replicability. More specific comparisons
depend on the SSL, suggesting that the choice of weighting needs
to be tailored to the SSL or SSLs. As a general trend, Reg-s
weights do well at low perturbations, while Reg-a and CS-Avg
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Fig. 2. Ratios of validation rms errors (rmses) to the rmse of the Reg-a
weighting strategy, averaged over 100 simulation iterations, as we vary the
coefficient perturbation window. Top seven panels correspond to different
choices of SSL; the colors correspond to different weighting schemes. Bot-
tom displays average validation rmse of the best-performing scheme (indi-
cated with color) for each SSL (indicated by letter) at each perturbation
window.

weights do well at high perturbation. When Lasso is the SSL,
at low perturbation, all CSLs perform similarly. As perturba-
tion increases, CS-Avg weights do substantially better than the
rest, while Reg-a weights perform similarly to Avg, and Reg-s
weights are only slightly better than the merged learner. These
observations, however, do not extend to other panels in Fig. 2.
For example, when four SSLs are used jointly, CS-Avg weights

are only slightly better than Reg-a and Reg-s weights do quite
well. Comparing CART to Random Forest, which performs
some ensembling internally, we see that the merged learner per-
forms better in the Random Forest SSL case than in CART,
while in both cases gains are relatively insensitive to the level of
perturbation.

While the seven panels in Fig. 2, Top show relative differences,
Fig. 2, Bottom summarizes the absolute comparison, for refer-
ence. The Lasso is based on a model that is relatively similar to
the data-generating mechanism. Additionally, shrinking of coef-
ficients may prove beneficial as study heterogeneity increases.
Accordingly, CSLs using Lasso perform best overall.

Normalized and no-intercept versions of regression weights
performed similarly to the Reg-a and Reg-s shown in Fig. 2. We
present this information and additional variations on this simu-
lation in SI Appendix, section 2.1. In these variations, we gener-
ate the outcome under different error structures and change the
coefficient perturbation windows of the validation datasets.

Ovarian Cancer Prognosis. We next consider an application to
predicting survival of patients with ovarian cancer, using gene
expression profiles taken at time of diagnosis as predictive fea-
tures. CuratedOvarianData (25) is a comprehensive collection of
datasets relevant to our specific question, generated by a system-
atic literature review—an important step toward avoiding biases
arising in hand-picked collections of datasets (9). Riester et al.
(26) used CuratedOvarianData to build a predictor using a meta-
analytic method. Their predictor outperformed a comprehensive
(9) collection of existing predictors. Here we compare their pre-
dictor to a CSL. For comparability, our CSL uses a single-study
approach consistent with their method as the SSL. We repeat-
edly (R = 250) separate 15 ovarian cancer datasets into groups
of K =12 training and V =3 validation datasets. On the train-
ing sets, we then train a Riester predictor, a CSL, a merged
learner, and an SSL on the largest study, The Cancer Genome
Atlas (TCGA) study. See Materials and Methods for details on
each step.

Riester uses a multistudy training method that meta-analyzes
regression coefficients and produces a score that acts as an incre-
ment to the hazard of death in a proportional hazard model. To
measure performance we use the hazard ratio associated with a
change of one unit in the score vector, as evaluated in the val-
idation datasets. This is a practical and clinically interpretable
measure of discrimination.

Fig. 3 provides a comparison between several approaches.
The regression weighting strategies, motivated by optimality

Fig. 3. Differential discrimination of alternative classifiers. For each clas-
sifier we compute the hazard ratio associated with a change of one unit
in the score vector, as evaluated in the validation datasets. The vertical
scale is the ratio of this performance measure to that of the Reg-a CSL.
Colors indicate classes of learning strategies: White is weighted CSLs with
weights addressing cross-study prediction, purple is CSLs with fixed weights,
orange is merging and meta-analysis, and blue is a SSL trained on the
TCGA dataset. Horizontal lines are at y = 1 and at median performance of
CS-Avg.
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criteria and explicitly aiming at improving replicability, perform
best. Stacking specifically shows a clear advantage. Ensembling
with cross-study weights and fixed weights is next. The latter are
examples of forecast combination approaches that do not
attempt to account for interstudy performance. Merging and
meta-analysis have the worst overall performance, suggesting
that there is enough interstudy heterogeneity that combining the
datasets or their study-specific parameter estimates is not advan-
tageous. The TCGA study contributes more than half of the sam-
ples. When used in isolation, it can still contribute predictors
whose performance is comparable to that of some of the resem-
bling approaches. This illustrates that trade-offs between multi-
study and single-study learning need to be weighed carefully in
specific applications.

This example illustrates that multistudy learning can outper-
form traditional approaches. Importantly, the collection of stud-
ies is comprehensive and thus unbiased with respect to per-
formance; our reference comparators are best in class, so we
can confidently state that the CSLs are the best so far; the
SSL we used is the same as in the original Riester et al. (26)
paper, so all of the gains are directly attributable to multistudy
ensembling. In addition to the results presented here, in SI
Appendix, section 1 we provide an examination of multistudy
ensembling strategies when signatures are pretrained and when
the task is classification. These results reiterate that CSLs have
competitively generalizable performance compared with other
approaches.

Discussion
A potentially useful approach to increasing replicability of pre-
diction performance is to use statistical concepts that acknowl-
edge cross-study variation and explicitly aim to produce results
which are likely to be replicable across studies. Thus, we explore
the implications of training on multiple studies and then ensem-
bling prediction models, each trained on one of the studies.
We outline a general class of learners termed CSLs, imple-
mented through three components: (i) one or more single-
study learners, (ii) a study subsetting strategy, and (iii) a
combination approach. We show how to quantify the loss of
generalizability associated with single–training-set practices
compared with multistudy practices (Fig. 3), providing insight
into determinants of replicability. We also hope to contribute
to a more systematic utilization of multiple studies in machine
learning.

When sufficiently harmonized data from multiple studies are
available, weighted combinations of learners trained on multiple
training sets are feasible and may increase the chance of replica-
ble performance. Different learners respond to cross-study het-
erogeneity in different ways (Fig. 2). Each of several options we
presented can work well, depending upon the extent of inter-
study heterogeneity, the choice of learning algorithm, and other
data attributes. In our specific application to ovarian cancer
prognosis, we considered a comprehensive collection of studies,
unbiased with respect to performance; we illustrate that mul-
tistudy learning can outperform best-in-class comparators. We
chose our SSL so we can attribute gains unequivocally to multi-
study ensembling. We conclude that this approach warrants close
attention and further work.

As more data become publicly available, researchers are
presented with many opportunities for working with multiple
datasets simultaneously to train better predictors. These datasets
may have been collected in different circumstances, with dif-
ferent procedures, and on different populations. The features
from different studies are also unlikely to be exactly the same.
This heterogeneity typically implies systematic differences and
biases that challenge the replicability of the performance of pre-
dictors. Merging the data, perhaps after some preprocessing to
improve harmonization, and/or adding study-specific features

to the set of predictors are viable options. Some of the study-
to-study variation can also be reduced by selecting predictors
that are more likely to be comparably measured across studies
(27, 28), constructing shared features using unsupervised meth-
ods (29, 30), and considering comparable ascertainment mecha-
nisms for subjects or samples. The covariate shift literature (31–
33) addresses the problem of differing marginal distributions
of predictors through case reweighting and relearning to make
algorithms more applicable to a target population of known
distribution.

When differences across studies are small, or when these har-
monization steps are very successful, it is natural to combine all
training studies, to exploit the power of larger training sample
sizes. More often, variation in the relationship between predic-
tors and outcome across studies can be complex and hard to
remove. Observed and unobserved attributes of the data col-
lection process may affect this relationship even though the
marginal distribution of the covariates appears similar across
studies. This limits the efficacy of the methods described in the
previous paragraph. Cross-study learning provides a straightfor-
ward and intuitive way forward and also offers a direct means of
incorporating replicability into the learning process. As hetero-
geneity increases, our simulations (Fig. 2) indicate a “transition
point” in the heterogeneity scale where variation in the relation
between predictors and outcomes across studies becomes large
enough to make CSL preferable to merged learning.

Our application embeds a significant data harmonization
effort (25) and our simulations address only heterogeneity in the
regression coefficients. Data heterogeneity and harmonization
difficulties remain critical challenges for multistudy learning as
well. More work is needed to characterize scenarios where het-
erogeneity is too extreme to even attempt multistudy learning.
Transfer learning takes knowledge learned for completing one
task and tries to use it to better learn how to complete a dif-
ferent task (34–36). Connections may be worth exploring when
outcomes differ across studies.

Much of the scientific debate on replicability and reproducibil-
ity focuses on whether the results, or conclusions, of a study
are found again when a sufficiently similar study is conducted.
Additional progress is needed in making these terms rigorous
and building conceptual frameworks for measuring reproducibil-
ity and replicability (1). When we consider predictions, however,
we have direct and well-established means of evaluating replica-
bility of performance, assuming we can adequately address data
harmonization. A contribution of our approach is to not directly
require detailed understanding and modeling of the contributors
to study-to-study heterogeneity and to difficulties in replicabil-
ity. Instead we account for these within the context of a well-
defined language of evaluating predictions via the cross-study
performance of each SSL.

We hope our work will encourage a systematic exploration of
cross-study replicability of prediction performance. Multistudy
learning approaches are a promising direction to pursue in the
quest for practical remedies.

Materials and Methods
Regression Weights. We first provide general motivation and justification
for choosing the weights wlk in Eq. 1. Ideally, we would seek optimal prop-
erties consistent with the decision theoretic criterion in Eq. 2. As a formal
theory is not yet developed, we provide approximations. Consider minimiz-
ing the least-squares distance between Ŷ(x) and E{Y|x} in a hypothetical
(K + 1)st study, with respect to the weights. To derive an analytic solution,
we start with predictors that are discrete, with a finite set of values. Let Ŷl

k
be the vector of predictions generated by prediction function Ŷ l

k(x), with
each vector element in Ŷl

k corresponding to a specific point x in the pre-
dictors’ space. Let Ex{Y} be the corresponding vector of true conditional
means in study K + 1 and let Ỹ = [Ŷ1

1, . . . , ŶL
1, Ŷ1

2, . . . , ŶL
2, . . . , Ŷ1

K , . . . , ŶL
K ].

Conditional on the unknown Ex{Y}, and assuming Ỹ′Ỹ is invertible, the
optimal unconstrained weights can be straightforwardly shown to be the
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KL-dimensional vector of coefficients (Ỹ′Ỹ)−1Ỹ′Ex{Y} from the regression
of Ex{Y} on the Ŷl

ks.
In practice one can estimate Ex{Y} by the vector

∑
k n̄kȲk, where

the elements of vector Ȳk are the study-specific mean responses evalu-
ated at each point x, and n̄k = nk/

∑
k′ nk′ . This leads to weights wReg =∑

k n̄k(Ỹ′Ỹ)−1Ỹ′Ȳk. When some of the predictors are continuous, points
in the space of predictors are typically observed only once and do not
overlap across studies. Then Ex{Y} can no longer be directly estimated by
averaging across studies. We can continue to use the previous result as a
guide if we define study-specific Ỹk as an nk ×KL matrix formed similarly
to Ỹ above, but each one restricted to include predictions generated in
correspondence with points observed in study k only. These can be used
to form

wReg-a =

K∑
k=1

n̄k(Ỹ′kỸk)−1Ỹ′kYk. [3]

Each term (Ỹ′kỸk)−1Ỹ′kYk is a KL-dimensional vector of weights. For (K− 1)L
of these weights (the cross-study contributions) the response Yk has not
been previously used in generating the regressors in the corresponding
columns of Ỹk, while for the remaining L (the within-study contributions)
it has.

Alternatively, Ex{Y} can be approximated directly by the totality of the
observed Ys in the training sets. This motivates a “stacked weights” approx-
imation of the optimum (37). We first form the vector of the observed
responses Y = [Y′1, . . . , Y′K ]′, of dimension N =

∑
nk, and the N×KL

matrix of study-specific SSL predictions T = [Ỹ′1, . . . , Ỹ′K ]′. We then define
the stacked weights to be

wReg-s = (T′T)−1T′Y. [4]

We can also use nonnegative least squares to estimate the coefficients
for both regression-based weighting approaches. A nonnegative constraint
on weights is recommended by ref. 38 in the single-study resampling set-
ting. These approaches generalize work on combinations of forecasters
(39, 40).

Replicability Weights. An alternative strategy for forming weights is to
directly engineer them to reward cross-study replicability. Cross-study per-
formance within the K training studies informs about the generalizability
of a predictor, so weighting Ŷ l

k by measures of cross-study performance
may yield better performance across a future set of test studies. We pro-
pose an approach based on refs. 9 and 41. For a pair of studies k and
k′ in the training set, let the vector Ŷ l

kk′ include the predictions obtained

using model Ŷ l
k′ (x), trained in study k′, on the prediction profiles in study k.

We can evaluate cross-study performances via a utility function U(Yk, Ŷ l
kk′ ).

From these we can construct, for each l, a K×K matrix Z, with entries
Zl

kk′ =−U(Yk, Y l
kk′ ). The rows of this matrix represent how each Ŷ l

k′ per-
forms across all of the training datasets. Giving higher weights to prediction
functions (SSL) that show evidence of replicability within the training stud-
ies should help improve the CSL replicability in the presence of study hetero-
geneity. The V validation studies are never used in this CSL. For each l, we
construct weights by first summarizing row k of Z by the average of the off-
diagonal elements, or zlk = 1

K−1

∑
i 6=k Zl

ik, so that the resubstitution error

Zl
kk is excluded. Other row summarizations could also give useful results. We

then compute

wCS
lk =

|zlk −max(z11, . . . , zLK)|∑
i |zlk −max(z11, . . . , zLK)|

. [5]

This assigns a weight of zero to the worst-performing SSL, shifts losses for
all other SSLs accordingly, and normalizes weights.

Weights Used in Comparisons. Motivated by these concepts, we compare six
combination approaches:

Merged: Combine all datasets into one large dataset and train a single pre-
diction function, as in single-study learning.

Avg: Simple average: wlk = 1/LK.
n-Avg: Sample-size–weighted average: wlk = nk/L

∑
k′ nk′ . This allows us

to explore whether larger datasets will on average produce a more
reliable or more stable CSL.

CS-Avg: Replicability weights (5). In the simulations we form Zs with

elements Zl
jk = MSEl

jk = 1
nj

∑
(Yj − Ŷ l

jk)
2

and summarize rows by

the root of the average off-diagonal mean-square error zlk =

( 1
K−1

∑
i 6=k Zl

ik)
1/2

. In the cancer application, we form Zs with the
discrimination measure discussed in Results and proceed similarly
thereafter.

Reg-a: Averages of study-specific coefficients similar to wReg-a, but com-
puted via nonnegative least squares (simulations) as given by the
nnls R package (42) or Cox regression (ovarian example). In SI
Appendix, section 2.1 we also examine weights normalized to 1
and with no intercept.

Reg-s: Stacked regression weights similar to wReg-s, but computed via
nonnegative least squares (simulations) or Cox regression (ovar-
ian example). In addition we examine the same variations as for
Reg-a.

Simulated Data. We generate the outcome vectors Yk conditional on the
observed predictors. Within each iteration (R = 100 across learners and sce-
narios), we randomly separated datasets into K = 12 training and V = 3 val-
idation sets. We then reduced each dataset to a random subset consisting
of the same 20 genes, randomly chosen in each iteration. Up to 20 genes in
this subset are used to create a simple data-generating model; this is not a
feature selection step. We show in SI Appendix, section 2.2 that this choice
does not affect the conclusions of our simulation by recreating Fig. 2 with
40- and 100-gene subsets.

We generate Y using linear models. At each iteration we randomly
select a subset of at least two of the available genes. We gener-
ate “pivot” β coefficients uniformly from [−5,−0.5]∪ [0.5, 5], bounded
away from zero so that each selected gene would contribute to the
outcome. To simulate P(Yk|Xk) 6= P(Yj|Xj), we then perturbed the coef-
ficients across datasets. We generated each βik for each dataset uni-
formly from the window [βi − η, βi + η]. η was taken from the set
{0.25, 1, 5, 10}. These perturbation windows were chosen so that hetero-
geneity we observed in CuratedOvarianData (25) would be well within
the range used and to explore both small and large heterogeneity. We
chose to use a location shift instead of a scale change so that only
some covariates would be greatly affected by the dataset-to-dataset
variation.

We split the 12 training datasets evenly into low- and high-perturbation
groups. The low-perturbation window we used was 0.25 units, which
was kept constant as we varied the window for the high-perturbation
group through the set of η values listed above. We evaluated perfor-
mance in cases where the validation set resembled the low-perturbation
group. Additional simulation scenarios are described and reported in
SI Appendix, section 2.3.

Learners in Simulation Analysis. We used six different learning algorithms
to generate prediction functions and cross-study learners with L = 1: Lasso
[glmnet (43)], CART [rpart (44)], Random Forest [ranger (45)], Neural Net-
work [nnet (46)], Mas-o-Menos [custom function, following Zhao et. al.
(10)], and boosting [mboost (47)]. As the point is to investigate CSL, rather
than comparing SSLs, we used default settings when possible. For CART,
we included a pruning step. For nnet all models were fitted with size =
10. We also consider an L = 4 implementation including Lasso, CART, Neural
Network, and Mas-o-Menos, four learners that do not internally implement
resampling-based ensembling.

Ovarian Cancer Data. CuratedOvarianData (25) provides a manually curated
collection of data for gene expression meta-analysis of patients with ovar-
ian cancer, as well as software for reproducible preparation of harmonized
datasets. Here we use all 15 studies in CuratedOvarianData providing sur-
vival information without missing data in the features. The sample sizes of
each dataset varied from 42 to 510 subjects, and the 14 datasets had 2,909
gene features in common. The gene expression features of each dataset are
normalized.

Learner in Ovarian Cancer Analysis. We develop predictors that produce
risk scores for each patient following ref. 26. The SSL first chooses the
top 200 genes via univariate Cox regression. If gik is the coefficient esti-
mate for the ith gene in study k, the risk score for a new individual with
gene expression values x is

∑
i gikxi . The meta-analysis predictor (26) com-

bines these coefficients using the rma() function from the metafor pack-
age (48). We used the DL option to include a random effect to account for
heterogeneity.

Performance of each approach was evaluated by fitting a proportional
hazard model in the validation datasets, with survival as the censored out-
come, and the score as predictor, and computing the hazard ratio associated
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with a change of one unit in the score vector. This measures discrimination.
Cox coefficients were also used as the performance metric in zlk for the cross-
study weighted average. We compared the six combination approaches
described above to each other as well as the meta-analytic signature and the
signature produced by the TCGA dataset, which exhibited the best overall
SSL performance. The TCGA signature was not applied to the TCGA dataset
if it appeared in the validation datasets.

Reproducibility. Code and instructions to reproduce analyses are at https://
github.com/prpatil/csml rep.
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