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ABSTRACT

Background: The hope that genomic biomarkers would dramatically and immediately improve care for
common, complex diseases has been tempered by slow progress in their translation beyond bioinfor-
matics. We propose a novel use of genomic information where the goal is to improve estimator precision
in a randomized trial. We analyze the potential precision gains from the popular MammaPrint genomic
signature and clinical variables in simulations of randomized trials analyzed using covariate adjustment.
Methods: We apply an estimator for the average treatment effect in the trial that adjusts for prognostic
baseline variables to improve precision [1]. This precision gain can be translated directly into sample size
reduction and corresponding cost savings. We conduct simulation studies based on resampling genomic
and clinical data of breast cancer patients from four publicly available observational studies.
Results: Separate simulation studies were conducted based on each of the four data sets, with sample
sizes ranging from 115 to 307. Adjusting only for clinical variables provided gains of —1%, 5%, 6%, 17%,
compared to the unadjusted estimator. Adjusting only for the MammaPrint genomic signature provided
gains of 2%, 4%, 4%, 5%. Simultaneously adjusting for clinical variables and the genomic signature pro-
vided gains of 2%, 6%, 7%, 16%. The differences between precision gains from adjusting for genomic plus
clinical variables, versus only clinical variables, were —1%, 0%, 1%, 3%.
Conclusions: Adjusting only for clinical variables led to substantial precision gains (at least 5%) in three of
the four data sets, with a 1% precision loss in the remaining data set. These gains were unchanged or
increased when sample sizes were doubled in our simulations. The precision gains due to incorporating
genomic information, beyond the gains from adjusting for clinical variables, were not substantial.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

critical roadblock in the translation of genomic markers to the clinic
[3], in addition to problems with reproducibility [4], interpret-

The announcement of the Precision Medicine Initiative [2]
stated that “Precision medicine's more individualized, molecular
approach to cancer will enrich and modify, but not replace, the
successful staples of oncology — prevention, diagnostics, some
screening methods, and effective treatments — while providing a
strong framework for accelerating the adoption of precision med-
icine in other spheres.” In the realm of genomic biomarker devel-
opment, this mandate puts an explicit focus on “enrichment”, i.e.
how much additional information a new marker can provide to
supplement the standard course of care. The uncertain value of
genomic measurements for improving clinical practice has been a
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ability [5], and cost [6]. A small number of laboratory tests based on
genomic signatures have been approved for clinical use. Tests such
as MammaPrint [7], Oncotype DX [8], and Prosigna [9] rely on
measurement of expression for a set of genes that are associated
with differential survival and severity of breast cancer cases.

It is difficult to evaluate the clinical value that these genomic
signatures add beyond standard clinical factors measured for all
breast cancer patients, such as age, estrogen receptor status, tumor
size, and tumor grade. It is also known that tests based on genomic
signatures are not part of the standard of care in many cases [10];
[3]. Ongoing clinical trials are being performed to ascertain the
value of some of these signatures to make adaptive treatment de-
cisions [11]. We propose to evaluate the use of genomic signatures
in a different setting by considering the prognostic value added
from adjusting for a genomic signature in a randomized clinical
trial of a new treatment versus control.

2451-8654/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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In a randomized trial the primary analysis typically involves
estimating the average treatment effect. Adjusting for baseline
variables that are prognostic for the outcome can lead to improved
precision in estimating the average treatment effect at large sample
sizes (i.e., asymptotically as sample size grows). Yang and Tsiatis
[12] showed that for continuous outcomes and a linear model with
main terms, the analysis of covariance (ANCOVA) estimator is
guaranteed to be consistent and as or more precise than the stan-
dard unadjusted estimator, even if the linear model is not correctly
specified, i.e., the true distribution of the outcome given baseline
covariates may be much more complex than the linear model used,
and still the guarantee holds.

More recently, estimators with the same desirable property as
the ANCOVA procedure have been extended to binary and count
outcomes; see Cao et al. [13]; Tan [14]; Rotnitzky et al. [15] and
Gruber and van der Laan [16]. Colantuoni and Rosenblum [1] pro-
vide a review of these recent estimators, which are designed to
estimate an average treatment effect in the general setting of an
observational study, where the probability of being assigned to
treatment is not randomized and must be learned from the data.
These estimators may also be applied to randomized trials, where
their guarantees on improved precision require fewer assumptions
than in an observational study since in a randomized trial the
assignment probability is known (and set by design).

The above estimators all have the aforementioned consistency
and precision guarantee. One difference among them is that the
estimators of Colantuoni and Rosenblum [12]; Tan [14]; and
Colantuoni and Rosenblum [ 1] do not require solving a non-convex
(and therefore computationally challenging) optimization prob-
lem; however, the benefit of solving such a problem, as done by the
estimators of Cao et al. [ 13]; Rotnitzky et al. [ 15] and Gruber and van
der Laan [16]; is that they have potential for further precision gains,
so there is a computation versus precision tradeoff.

The precision gains provided by adjusting for baseline variables
depend on how correlated the baseline variables are with the
outcome and the degree of chance imbalance in the baseline vari-
ables across the treatment groups. To the best of our knowledge,
the value of such adjustment has not yet been assessed using
simulations based on resampling from breast cancer patient data
sets, as we do here. We resample in a way that preserves correla-
tions between baseline variables and the outcome in order to give a
realistic assessment (as best as we can using simulations and our
data sets) of the magnitude of precision gains likely to be observed
in practice.

We aim to determine the prognostic value of clinical and/or
genomic variables measured at baseline (pre-randomization). Of
particular interest is the additional gain from adjusting for the
genomic signature beyond that obtained by adjusting for standard
clinical baseline variables. Our definition of precision gain in this
setting equals the percent sample size reduction from using the
adjusted estimator compared to the unadjusted estimator in order
to attain the same power, asymptotically. Although perhaps not as
groundbreaking of a result as once hoped, this approach represents
a realistic attempt to assess the value of the information provided
by a genomic signature.

2. Methods
2.1. Data

Microarray data used to validate the MammaPrint model [17]
were gathered as described in the appendix of Marchionni et al.
[18]. The MammaPrint validation data set consists of 307 breast
cancer patients. Table 1 summarizes the key clinical factors recor-
ded for these patients as well as their MammaPrint risk prediction,

Table 1

MammaPrint validation data set. ER - estrogen receptor status,
Grade - tumor severity grading (3 is most severe), Five-Year
Recurrence - whether or not cancer has reappeared after five
years, MammaPrint risk prediction - high or low risk for cancer
recurrence. Age and Tumor Size are given as means with
standard deviations in parentheses.

Characteristic Summary

n 307

Age (years) 47.08 (7.27)
Five-Year Recurrence

Yes 47

No 260

Tumor Size (mm) 21.48 (7.71)
Grade

1 47

2 126

3 126
Unknown 8

ER

+ 212

- 90
Unknown 5
MammaPrint Risk Prediction

High 194

Low 113

which is a binary classification based on the risk score calculated by
the MammaPrint model [7]. We dropped 11 patients whose es-
trogen receptor (ER) status or tumor grade were unknown and
conducted our analysis using the 296 remaining patients.

We also conduct simulations based on three external breast
cancer data sets described in the Supplementary Material. These
are called GSE19615, GSE11121, GSE7390, with sample sizes 115,
200, 198, respectively.

2.2. Statistical method to adjust for baseline covariates

We define the average treatment effect to be the difference
between the population mean of the primary outcome under
assignment to treatment and the population mean under assign-
ment to control. The term “covariate adjustment” means that in-
formation from baseline variables is used to improve the precision
in estimating the average treatment effect. This is done by adjusting
for chance imbalances in baseline variables between treatment and
control arms. Since our focus is improved precision for estimating
the average treatment effect, we do not consider effects within
subgroups; investigating the latter is an area for future research.

Increased precision for estimation of the average treatment ef-
fect can lead to a trial with fewer participants and shorter duration,
compared to a trial with the same power that uses a less precise
estimator. This is because the sample size for a trial is typically
selected in order to achieve a desired power, e.g., 80% or 90%, at an
alternative (e.g., the minimum, clinically meaningful effect size);
using a more precise estimator leads to a smaller required sample
size to achieve the power goal. More precise estimators can be used
to reduce the sample size even when the average treatment effect is
zero, which is the setting of our simulation study. This can be
achieved by prespecifying the sample size as that which achieves a
desired power at a given alternative, taking into account the
percent variance reduction from using the adjusted estimator
compared to the unadjusted estimator. A more flexible approach is
to use information based monitoring, where the trial runs until a
preplanned information level has accrued (see, e.g., Jennison and
Turnbull [19]. Information with respect to a given estimator,
defined as the reciprocal of its variance, accrues faster for estima-
tors with greater precision, leading to smaller sample sizes.
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We assume each participant in the trial contributes a data vector
D = (WA)Y), where W = (Wy, ..., W;) is a vector of covariates
measured at baseline, A is an indicator of study arm (0 = control,
1 = treatment), and Y is a binary outcome of interest which in our
case is the indicator of cancer recurrence within 5 years from
baseline. We assume the trial data consist of n independent, iden-
tically distributed participant data vectors {D;}[_; drawn from
unknown joint distribution P on (W, 4, Y). We assume a nonpara-
metric model except that W and A are independent by randomi-
zation (called the randomization assumption), and we assume the
regularity conditions in Ref. [1]; Section 3.2).

The goal is to estimate the average treatment effect defined as
the difference between 5 year survival probabilities comparing
treatment versus control, i.e.,

Y=EYA=1—EYJA=0=P(Y=1A=1)—P(Y = 1A = 0).
(1)

Another possible treatment effect, which we do not consider, is
the hazard ratio under a proportional hazards model. This would
have the advantage that the recurrence time (rather than only the
indicator Y of recurrence by 5 years) is fully used; however, a
disadvantage is that inferences depend on the proportional hazards
assumption being correct, and these inferences would typically be
biased (even at large sample sizes) if that assumption fails to hold.

The unadjusted estimator of y is defined as

Dura = YA S Vil -A)
YA ik -A)

This estimator is consistent (i.e., converges in probability to the
population average treatment effect y) but ignores the baseline
variables W. If W is prognostic for Y then it is possible to improve
precision by appropriately adjusting for W. Throughout, we do not
assume that W contains information about treatment effect het-
erogeneity, i.e., who benefits more or less from treatment; we only
use W as prognostic variables that may explain some of the varia-
tion in Y. This variation could be unrelated to treatment.

To leverage the information in W, we apply the enhanced effi-
ciency, doubly-robust estimator of Colantuoni and Rosenblum ([1],
Section 4.2), which is a special case of the class of estimators from
Rotnitzky et al. [15] that is slightly modified for use in the ran-
domized trial context. We denote this estimator by @adj. Software to
compute this estimator is given in R and SAS by Colantuoni and
Rosenblum [1]. The R code we used is available at the link in Section
2.5.

The estimator @adj uses parametric working models for the
mean of the outcome given baseline variables and study arm. We
call these working models since we do not assume they are
correctly specified. The true data generating distribution may differ
arbitrarily from the functional form of the model.

Computation of y4; is accomplished via the following steps:

1. Let « = (ag, ..., aj)T. Fit the following propensity score working
model for P(A = 1|W): g(W,a) = logit™(ag + a;W; + ... + aWj)
via maximum likelihood estimation and denote the estimator of
o by a= (&07 &])T

2. For each arm a={0,1}, define the following working model for
E(Y|A = a,W):Q@(W,8) =logit ' (85" + 81 Wy + .87 W)).
Fit the above model at a = 1 using weighted logistic regression

with weights g(\/\]/ = and using only participants with A = 1 to

~( ~(1 ~(1
obtain estimated coefficients ﬁ( - (ﬁg ), ...,[5](- )). Define the

~(1
initial estimator for E[Y|A=1] as [ :%Z?:1Q(l)(Wi,ﬁ( )).

where the sum is taken over all participants. The estimator fig
for E[Y|A=0] is obtained analogously by setting a = O,

. B . B . 1 1
replacing A = 1 with A = 0, and replacing o) by WD)

above. @
3. Define the new covariate u, (W)= Q@ W, 8 ) — i, for each

a € {0,1}, which uses ﬁa,ﬂ(a) as estimated in step 2. Fit the
following augmented propensity score model for P(A = 1|W):
Saug(W,a,y)=logit ' (ao+a1Wi+...+ajWj+youo( W)+y1u1(W))
using maximum likelihood estimation to obtain estimated co-
efficients @ and y = (g, v1)-

4. Recompute step 2 using gaug(W, &, 7) in place of g(W, @) in the
weights to obtain new estimates fi, iig. Define the adjusted

estimator of the average treatment effect as @adj = {1 — fig-

Throughout, we assume there are no missing data and the
vector (W;A;,Y;) is observed for each participant i. The models g and
Zaug are correctly specified as long as each contains an intercept,
due to the randomization assumption. By design, each participant is
assigned to treatment or control with probability 0.5, independent
of his/her baseline variables, so PA=1W =w)=PA=1)=0.5
for all values of w. Consider the model

g(W,a) = P(A = 1|W) = logit ' (ag + a1 Wy + ... + W)

Setting «q...ax = 0 and «ag = logit(1/2) yields correct specifica-
tion of the model, i.e., the model at these parameter values equals
the true distribution P(A = 1|W) = P(A = 1) = 1/2. The same holds
for gqug. Though the data generating distribution has A independent
of W, in any given realization of the data there can be imbalances in
W across arms due to chance variation.

The models Q,Q") will typically be misspecified if any of the
baseline variables is continuous valued or has many discrete levels.
An important feature of the estimator @adj is that it is consistent
regardless of whether the parametric models Q@0 are correctly
specified; that is, consistency holds even when the true data
generating distribution E(Y|A =a,W) does not have the form
QW89 for any g. Furthermore, the estimator y,; is guaranteed
to have asymptotic precision equal to or greater than that of the
unadjusted estimator as proved by Refs. [15]; [1]. However,
depending on the number of baseline covariates and the sample
size, the precision may be worse for the adjusted estimator
compared to the unadjusted estimator; this can happen if the
baseline variables are only weakly (or not at all) prognostic, there
are more than a few of them, and the sample size is relatively small.

It is also possible to use the output of step 2 to construct the
simpler estimator ; — iy of the average treatment effect. This
estimator is called the double-robust weighted least squares esti-
mator (DR-WLS) and is attributed to Marshall Joffe by Robins et al.
[20]. The value of adding steps 3 and 4 is that the resulting esti-
mator has been proved to be asymptotically as or more precise than
the unadjusted estimator [15]; [1].

2.3. Baseline covariates used for adjustment

The baseline variables W used in the estimators defined above
must be pre-specified. They can be any functions of measurements
made prior to randomization. We define four sets of covariates that
we will adjust for using the procedure described in Section 2.2:

o W_rr: {Age, Tumor Size, I(Tumor Grade = 2), I(Tumor
Grade = 3)}

e Wc: {Age, Tumor Size, [(Tumor Grade = 2), [(Tumor Grade = 3),
ER Status}

e W;: {MammaPrint Risk Category}
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o Wce: {Age, Tumor Size, I(Tumor Grade = 2), I(Tumor Grade = 3),
ER Status, MammaPrint Risk Category}

Here, [(Tumor Grade = 2) is an indicator of whether or not the
patient's tumor is severity grade 2.

With these four sets of covariates, we are able to contrast gains
in precision from different covariate sources. We compare
adjusting for W¢ versus W_gg to determine how much adding the
clinical covariate ER status to other clinical covariates improves
precision. We also compare the prognostic value of the genomic
predictor plus clinical covariates (Wc¢) versus clinical covariates
alone (W().

We consider the clinical covariates above because they reflect
quantities that clinicians may commonly use to evaluate cancer-
related risks and courses of therapy. The number of covariates
we are adjusting for here exceeds the conservative approach
recommended by Ref. [1]. They recommend 2-3 adjustment
covariates at sample sizes such as ours. The potential downside to
adjusting for greater numbers of covariates is that we risk non-
negligible increases in estimator variance if our covariates turn
out to be non-prognostic for the outcome, as shown in Section 3.
We chose to include larger numbers of covariates here in order to
compare the added value of MammaPrint above the prognostic
value of the full set of relevant clinical covariates available in our
data sets.

2.4. Simulations

We conducted a simulation study with the goal of comparing
the variance of the unadjusted and adjusted estimators to deter-
mine how much precision we may gain from adjusting for clinical
and genomic covariates. For each of the four data sets described in
Section 2.1 and in the supplement, we construct a data generating
distribution that mimics the observed correlation between baseline
variables and outcomes.

To preserve the relationship between outcome and potentially
prognostic covariates from the original data set, we resample par-
ticipants with replacement and create a new sample of the size of
our data set (296 for the MammaPrint validation data) for each
simulated trial; we record (W,Y) for each resampled participant.
This maintains the empirical joint distribution of (W,Y), preserving
the correlation of these variables. In each simulated trial, the study
arm assignment A of each participant is a random draw from the
Bernoulli distribution with probability 1/2 of being 0 or 1, inde-
pendent of (W,Y). The population average treatment effect defined
in (1) corresponding to the above data generating distribution is
therefore y=0.

The reason we do not simply resample patient data vectors
(WA,Y) with replacement from a given data set is that the resulting
data generating distribution would not have treatment A inde-
pendent of baseline variables W (as in a randomized trial). This is
because our data sets are from observational studies, as opposed to
randomized trials. Though it would be preferable to use data from
randomized trials, we were not able to obtain data from any such
trials that also recorded the MammaPrint predictor at baseline.
Observational studies still can provide a rough approximation to
the magnitude of potential precision gains from covariate adjust-
ment, since these gains are directly related to the variance of Y
explained by W [1].

For each data generating distribution described above, we
construct J = 100,000 simulated trial data sets, each of sample size
equal to the original data set (excluding patients with missing data).
Using the j™ simulated data set, we compute the unadjusted esti-

mator @Juna and the adjusted estimator %dj using each of the

covariate sets W_gg,We,Ws,Wes. We then approximate the bias and
variance of each of these estimators based on its values over the
100,000 simulated trials. Since y=0, the bias B of an estimator ‘7/ is
E(@) -y = E(@), which is approximated by the average of @ over the
100,000 simulated trials we conducted. We similarly approximate the
variance of each estimator. For the unadjusted estimator, the
approxmiate bias and variance based on our simulation study are

~J =J
denoted by Byng = }ZL WVung and o2, = FL]E;: 1 (Vuna — Buna)?,
respectively. The bias and variance approximations for the adjusted

estimator Y5 are denoted similarly: By :}Z}:]%dj,

‘73(1]‘ = J%lzfﬂ (%dj — Bygj)®. For conciseness, we refer to these ap-
proximations as the bias and variance of the corresponding estimator,
rather than writing “approximate bias” and “approximate variance”.

We define the (percent) precision gain due to the adjusted
estimator in comparison to the unadjusted estimator, as approxi-

2 2
Tuna—%adj
0

mated by simulation, as Gug; = x 100%. The precision gain

2
una

equals, asymptotically (as sample size goes to infinity), the percent
reduction in sample size to achieve a desired power at a local
alternative comparing the adjusted versus unadjusted estimator. It
equals 1 — 1/RE, where RE is the asymptotic relative efficiency.
Negative values of Guqj correspond to efficiency losses, which can
occur if baseline variables are only weakly (or not at all) prognostic
for the outcome. Asymptotically (as sample size goes to infinity),
Gagj converges to a nonnegative value, which represents zero or
positive precision gain, as proved by Rotnitzky et al. [15]; Colan-
tuoni and Rosenblum [1].

Simulations were conducted via the Batchjobs R package [21],
which allows for an interface between R and a cluster queuing sys-
tem. We parallelized such that 1000 simulated data sets were con-
structed concurrently by each of 100 processors on a Sun Grid Engine
(SGE) cluster, which sped up the computation of our approximations.

We also conducted simulation studies as above except where
the sample size in each simulated trial is double that of the original
data set. In all of our simulation studies, each simulated partici-
pant's data is an independent, identically distributed draw from a
joint distribution P (which depends on the data set being resam-
pled from) on (W,A,Y). Therefore, even though we are resampling
(with replacement) double the sample size n from the original data
set, the effective sample size is 2n (i.e., each estimator's variance is
roughly cut in half compared to its variance at the original sample
size.) To illustrate this point, consider the analogy of drawing n
independent, identically distributed realizations Yj,...,Y, from a
Bernoulli distribution with true probability 1/4 of being 1. Though
this is equivalent to resampling n times with replacement from the
four person data set {0,0,0,1} (with equal chance of each), each
draw is independent and the effective sample size equals the
number of draws n. The precision gains from adjustment are ex-
pected to be similar when the original sample sizes are used.

2.5. Reproducibility

Our analyses are reproducible. Code, data files, and supple-
mentary results are available at https://github.com/leekgroup/
genesigprecision.

3. Results

Table 2 presents variances for each estimator and the precision
gain Gggj, using different sets of baseline covariates, for the Mam-
maPrint validation data set and the data sets GSE19615, GSE11121,
GSE7390. All precision gains Gggj are rounded to the nearest
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Table 2
Precision gains due to adjustment for different sets of baseline covariates.

Covariate set Original sample size Double sample size

Ulzma Ugdj Gadj azna ngj Gadj
MammaPrint data set
W g 0.0018 0.0017 4% 0.00089 0.00084 6%
Wc 0.0018 0.0017 5% 0.00089 0.00083 6%
Wg 0.0018 0.0017 5% 0.00089 0.00084 5%
Wee 0.0018 0.0017 6% 0.00089 0.00082 7%
GSE19615 data set
W_gr 0.0088 0.0078 11% 0.0044 0.0037 14%
We 0.0088 0.0073 17% 0.0044 0.0035 21%
We 0.0088 0.0084 4% 0.0044 0.0042 4%
Wee 0.0088 0.0074 16% 0.0044 0.0035 21%
GSE11121 data set
W g 0.0036 0.0034 7% 0.0018 0.0016 9%
Wc 0.0036 0.0034 6% 0.0018 0.0017 9%
We 0.0036 0.0036 2% 0.0018 0.0018 2%
Wee 0.0036 0.0034 7% 0.0018 0.0016 9%
GSE7390 data set
W_gr 0.0045 0.0045 -1% 0.0022 0.0022 1%
We 0.0045 0.0045 —1% 0.0022 0.0022 1%
We 0.0045 0.0043 4% 0.0022 0.0022 4%
Wee 0.0045 0.0044 2% 0.0022 0.0021 5%

percent.

Consider the left half of Table 2, which corresponds to simulated
trials having the same sample size as the corresponding data set.
Adjusting only for clinical variables (W¢) provided precision gains
Gadj of —1%, 5%, 6%, 17% (from smallest to largest), compared to the
unadjusted estimator, across the four data sets. Adjusting only for
the MammaPrint genomic signature (W) provided gains of 2%, 4%,
4%, 5%. Simultaneously adjusting for clinical variables and the
genomic signature (Wc¢) provided gains of 2%, 6%, 7%, 16%.

Each of the above precision gains Gqq; was unchanged or slightly
increased when each simulated trial has double the sample size as
the corresponding data set (right half of Table 2). This is to be ex-
pected, as described above. For each estimator, covariate set, and
data set, the variance at double the sample size was approximately
half of the corresponding variance at the original sample size, as
expected.

The additional gain due to the genomic predictor is defined as
the difference between the precision gain from W¢s versus We.
First, consider the left half of Table 2, where each simulated trial has
the same sample size as the corresponding data set. In simulations
based on the MammaPrint validation data, the genomic predictor
provided an additional gain of 1% above using all clinical factors. In
two of the other data sets, the additional gains due to the Mam-
maPrint predictor were 0% (GSE11121) and 3% (GSE7390). Using a
third such data set, GSE19615, adjusting for the MammaPrint pre-
diction in addition to the clinical covariates decreased precision by
1% compared to adjustment for clinical covariates alone. Such los-
ses in precision can occur when adjusting for a variable that is only
weakly prognostic (or not prognostic) for the outcome. The addi-
tional gains due to the genomic predictor were 0%, 0%, 1%, 4% when
sample sizes in the simulations were doubled (right half of Table 2).

We also examined the additional gains due to ER status, defined
as the difference between the precision gains from W¢ versus W_gg.
These values were —1%, 0%, 1%, 6%, for the four data sets, based on
simulations at the original sample size. Qualitatively, these were
similar to the magnitudes of additional gains due to the genomic
predictor.

We conducted additional simulations where we generated
baseline covariates independent of the outcome, in order to
determine the magnitude of precision losses due to adjusting for
pure noise. This quantifies the loss that would occur if one were to

prespecify an analysis that adjusts for variables conjectured to be
prognostic, but these variables turn out to be non-prognostic. We
generated 100,000 simulated trial data sets as above, except where
the data generating distribution has baseline variables W inde-
pendent of Y. This was done by resampling W with replacement
from its marginal distribution in the MammaPrint data set, and
similarly resampling Y from its marginal distribution. The results
are shown in Table 3. As expected, all combinations of covariates
produce zero or negative precision gains, with greater losses when
adjusting for larger covariate sets (due to more degrees of freedom
in the working models). The maximum loss in precision is 3% when
using the original sample sizes (left half of Table 3). This is due to
the inclusion of greater than the recommended number of
adjustment covariates, as described in Section 2.3. The potential
losses are smaller if the sample size is larger, as shown in the right
half of Table 3 where the maximum loss is 1%. Larger sample sizes
tend to decrease the magnitude of precision losses since asymp-
totically (as sample size goes to infinity), G converges to a
nonnegative value, which represents zero or positive precision
gain, as proved by Refs. [15]; [1]. We present additional simulation
results with W generated independent of Y in the Supplementary
Material where we reduce the number of clinical covariates
adjusted for, resulting in smaller precision losses.

The bias approximations Bynq and Bgg; were both quite small,
with magnitudes of at most 0.0003 over the four simulation
studies. We examined the distribution of the differences between
‘//una and wjadj over the j = 1,...,100,000 iterations in the 51mulat10n
using the Mammaprint valldatlon data set; the histogram of l//una
1//ad] appears in Fig. 1, and analogous histograms for the other
datasets along with a table comparing the distributions of differ-
ences across the four simulation studies are available in the sup-
plement. For the simulation with the MammaPrint dataset, we saw
an average difference of 0. 00005 (standard deviation = 0.0145). The
2.5% and 97.5% quantiles of 1//Lma \pad were [-0.029, 0.029]; this
implies that 95% of the differences between the unadjusted and
adjusted estimators had magnitudes smaller than 3%. The correla-
tion of the two estimators was 0.94.

In general, we expect the difference between the unadjusted
and adjusted treatment effect estimators to be small unless there is
substantial chance imbalance between treatment and control arms
that is accounted for by the adjusted estimator. In that case, we
would expect the adjusted estimator to be closer to the true effect.
In our setting, the adjusted estimator was closer to the true effect of
zero 53% of the time, suggesting a slight improvement over the
unadjusted estimator.

4. Conclusion

Appropriately adjusting for prognostic baseline covariates has
potential to improve precision in estimating the average treatment
effect in randomized trials. If baseline factors are collected for pa-
tients enrolled in a study, then adjusting for them can reduce the
sample size necessary to obtain a desired precision in estimation of

Table 3
Precision gains under data generating distribution with Wand Y independent, based
on marginal distributions from MammaPrint validation data set.

Covar. Set Original sample size Double sample size

02na Tadj Gadj 02na 724 Gadj
W_gr 0.00177 0.00181 —2% 0.00090 0.00091 -1%
We 0.00177 0.00182 —2% 0.00090 0.00091 —1%
We 0.00177 0.00178 0% 0.00090 0.00090 0%
Wee 0.00177 0.00183 -3% 0.00090 0.00091 -1%
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Fig. 1. Histogram of %M - %dj. The histogram of differences between the unadjusted
and adjusted estimators is approximately normal and is centered close to the true
effect of zero (mean = 0.00005, standard deviation = 0.0145). The adjusted estimator
is closer than the unadjusted estimator to the true effect approximately 53% of the
time. For this histogram, we considered the adjusted estimator using all available
baseline covariates (clinical + genomic).

the average treatment effect and, therefore, the cost to run the trial.

The precision gains from adjusting for clinical variables were
substantial (5%, 6%, 17%) in simulation studies based on three out of
four data sets we considered; the last data set led to a loss in pre-
cision of 1%. These precision gains slightly increased when sample
sizes were doubled, showing that covariate adjustment can be
valuable both at moderate (115—307) and larger sample sizes, in
the context of breast cancer treatment trials.

The additional gains from adjusting for the genomic predictor
were quite small. We consider several possible explanations for this
finding. First, our estimator may not have effectively extracted the
additional prognostic information in the genomic marker; e.g., it
may be that including interactions between the MammaPrint score
and clinical variables, or using a less parametric model than logistic
regression (e.g., splines), would lead to an adjusted estimator with
better precision than we observed. This is difficult to evaluate, since
using more flexible models could lead to overfit; this may be
controllable via penalization or cross-validation, and is an area of
future research. Another possible explanation is that the Mam-
maPrint risk score is too coarse a summary measure of the 70 gene
expression levels measured by the MammaPrint assay, for our
purpose. The MammaPrint risk score was not designed for maxi-
mizing additional prognostic value beyond what is explained by
clinical variables. It may be that a different function of the 70 gene
expression levels would lead to greater precision gains, but this is
beyond the scope of this paper. A third possible reason for the
lackluster additional gains from the genomic predictor is that there
may be little additional prognostic value in the genomic informa-
tion for the outcome we considered. The MammaPrint score in the
validation set examined here was 89% sensitive to high risk-of-
recurrence patients, 42% specific to low risk-of-recurrence [18],
but these measures (i.e., sensitivity and specificity) focus only on
the MammaPrint score and do not separate out the variation that
can be explained by clinical variables.

The additional gain due to the genomic predictor was roughly
similar to the additional gain from including ER status over other
clinical covariates. ER status may lack prognostic power if ER pos-
itive participants are treated with adjuvant tamoxifen [22]. Simi-
larly, it is possible that the MammaPrint score influenced treatment
decisions, which could lead to decreased prognostic value.

A limitation of our approach is that we used data from obser-
vational studies, rather than from randomized trials. If the prog-
nostic value of baseline variables is similar in a randomized trial
setting, then our results may shed light on the order of magnitude
of precision gains that can be achieved from covariate adjustment.
However, if the prognostic value of baseline variables for the
outcome is systematically different in a randomized trial, then our
results would not apply. Future work involves applying our simu-
lation approach to randomized trial data sets. Another limitation of
our approach is that we ignore censoring due to loss to follow up. It
is possible to incorporate censoring into our estimator, under a
missing at random assumption, but this is an area for future work.

Our focus was on the prognostic value of different variables, that
is, the ability of these variables to explain variation in the outcome
(5 year recurrence). In contrast, the more ambitious goal of
personalized medicine is to find predictive variables, i.e., variables
that discriminate between those who are likely to benefit from a
specific treatment or not. Being prognostic is not a prerequisite for
being predictive, e.g., as in the case of ER status. However, the
MammaPrint score having little prognostic value beyond the vari-
ation explained by clinical covariates indicates that its utility for
covariate adjustment is limited.
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