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Abstract

Motivation: Prior to applying genomic predictors to clinical samples, the genomic data must be

properly normalized to ensure that the test set data are comparable to the data upon which the pre-

dictor was trained. The most effective normalization methods depend on data from multiple

patients. From a biomedical perspective, this implies that predictions for a single patient may

change depending on which other patient samples they are normalized with. This test set bias will

occur when any cross-sample normalization is used before clinical prediction.

Results: We demonstrate that results from existing gene signatures which rely on normalizing test

data may be irreproducible when the patient population changes composition or size using a set of

curated, publicly available breast cancer microarray experiments. As an alternative, we examine the

use of gene signatures that rely on ranks from the data and show why signatures using rank-based fea-

tures can avoid test set bias while maintaining highly accurate classification, even across platforms.

Availability and implementation: The code, data and instructions necessary to reproduce our

entire analysis is available at https://github.com/prpatil/testsetbias.

Contact: jtleek@gmail.com or bhaibeka@uhnresearch.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

One of the most common barriers to the development and transla-

tion of genomic signatures is cross-sample variation in technology,

normalization and laboratories (Majewski and Bernards, 2011).

Technology, batch and sampling artifacts have been responsible for

the failure of genomic signatures (Baggerly et al., 2005; Petricoin

et al., 2002), irreproducibility of genomic results (Michiels et al.,

2005) and retraction of papers reporting genomic signatures

(Sebastiani et al., 2010). Even highly successful signatures such as

Mammaprint (van’t Veer et al., 2002) have required platform-

specific retraining before they could be translated to clinical use

(Glas et al., 2006). An under-appreciated source of bias in genomic

signatures is test set bias (Lusa et al., 2007). Test set bias occurs

when the predictions for any single patient depend on the data for

other patients in the test set. For example, suppose that the gene ex-

pression data for a single patient is normalized by subtracting the

mean expression and dividing by the standard deviation of the ex-

pression across all patients in the test set. Then the normalized value

for any specific gene for that patient depends on the values for all

the patients they are normalized with. The result is that a patient

may get two different predictions using the same data and the same

prediction algorithm, depending on the other patients used to nor-

malize the test set data (Fig. 1).

There are many scenarios under which a patient’s classification

ought to change: if new information updates or alters the prediction

algorithm or if the raw, biological patient data itself changes.
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The case we would like to explore is when the gene signature and

prediction algorithm are ‘locked down’ and when there is no biolo-

gical variation in the patient data. We are concerned with how

much data transformation due to pre-processing and normalization

affects classification. It is our assertion that steps taken to transform

patient data for the purposes of applying a prediction algorithm

should not alter the patient’s eventual classification.

Some normalization methods (Bengtsson et al., 2008; McCall et al.,

2010; Piccolo et al., 2012) and some batch correction methods

(Leek et al., 2012; Parker et al., 2014) have addressed this issue by nor-

malizing each sample against a fixed, or ‘frozen’, set of representative

samples. Unfortunately, these approaches can be applied only to specific

platforms where large numbers of representative samples have been

collected. This is especially relevant when custom chips are designed, as

is the case in many clinical applications. There remain a large range of

platforms for measuring gene expression in use by researchers (Barrett

et al., 2013), and single sample normalization methods are not currently

available for many of these platforms. Additionally, methods such as

quantile normalization and other forms of data scaling and transform-

ation have become well known in the field and are often applied as

standard steps in a data processing pipeline.

Even if single sample normalization methods were universally

available, public measures of gene expression are frequently pre-

processed using a range of methods for cleaning, normalization and

analysis, resulting in a range of expression values for the same gene

across different platforms (Allison et al., 2006). A more tractable

solution is to build gene signatures that do not rely on raw gene

expression values. We propose using the ranks of genes instead of

their raw expression values under the assumption that any trans-

formation applied to the data is rank-preserving.

As a concrete example, we focus on the PAM50 signature for

breast cancer subtyping (Parker et al., 2009), which is used to assign

patients with breast cancer to one of five molecular subtypes: Basal,

Luminal A, Luminal B, Her2 and Normal. We show that when the

number of patients in the test set changes, the predictions for a single

patient may change dramatically. We also show that variation in pa-

tient populations being predicted upon leads to test set bias.

Interestingly, PAM50 can be easily modified into a rank-based sig-

nature. We show that predictions from rank-based PAM50 are com-

parable to those from standard PAM50 and that predictions from

rank-based PAM50 are invariant to test set bias.

Test set bias is a failure of reproducibility of a genomic signature.

In other words, the same patient, with the same data and classification

algorithm, may be assigned to different clinical groups. A similar failing

resulted in the cancellation of clinical trials that used an irreproducible

genomic signature to make chemotherapy decisions (The Cancer

Letter, 2011). The implications of a patient’s classification changing

due to test set bias may be important clinically, financially and legally.

In the example of PAM50, a patient’s classification could affect a treat-

ment or therapy decision. In other cases, an estimation of the patient’s

probability of survival may be too optimistic or pessimistic. The funda-

mental issue is that the patient’s predicted quantity should be fully

determined by the patient’s genomic information, and the bias we will

explore here is induced completely due to technical steps.

2 Materials and Methods

2.1 Study population and data
We collected and curated gene expression microarray data representing

28 independent studies (Haibe-Kains et al., 2012). These datasets

Fig. 1. A description of how test set bias can alter class prediction for an individual patient. In (a), we learn a model for predicting if a patient is in class R (red) or class

B (blue). In our training data, the patients with darker gray features tend to be in class B, whereas the lighter gray patients are in class R. We develop a prediction rule

from our training data and apply it to a new darker gray patient, and we see that he is likely to be classified to class B. In (b), we attempt to classify a single patient in

the context of two different patient populations. We see that depending on the number and type of other patients in the population when we normalize the data, the

resulting feature profile for our patient can be drastically different. This leads to different eventual classifications by our prediction rule. We contend that the ultimate

classification of a patient should not depend on the characteristics of the test set but rather solely on the characteristics of the patient himself
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spanned 15 different proprietary platform types and a variety of plat-

form versions and included a range of commercial and private manufac-

turers, spanning Affymetrix, Illumina and Agilent as well as custom

arrays. The data were collected from the Gene Expression Omnibus

(Barrett et al., 2013), ArrayExpress (Parkinson et al., 2007), The

University of North Carolina at Chapel Hill database (UNCDB),

Stanford Microarray Database (SMD) and Journal and Authors’ web-

sites. Metadata were manually curated as previously described (Haibe-

Kains et al., 2012). Experiments ranged from 43 to 1992 patients, with

a median of 131 patients and a total of 6297 patients (Table 1).

2.2 PAM model fitting
Prediction analysis of microarrays (PAM) (Tibshirani et al., 2002) is

a commonly used supervised learning approach for building predic-

tion models using gene expression data from microarrays. We em-

ployed the pamr package (Hastie et al., 2014) to fit a PAM model

using R. Briefly, pamr takes class labels and microarray data and

calculates an average gene expression profile, or centroid, for each

class. It then shrinks the centroid to eliminate genes that do not con-

tribute to explaining variability between classes. We then

cross-validate to find an appropriate shrinkage threshold to maxi-

mize predictive accuracy of our model. We use this threshold to de-

termine how many of the genes to keep in the predictor.

2.3 Normalization procedure
Normalization is accomplished through quantile rescaling as imple-

mented in the genefu package (Haibe-Kains et al., 2011). This scales

each gene expression value x using specific quantiles from the ex-

pression data. First, a quantile q is chosen. Through examination of

many microarray datasets, q¼0.05 was found to be robust. The

expression values corresponding to the desired quantiles q1 ¼ xq
2

and

q2 ¼ x1�q
2

are defined, and the scaled value x0 ¼ x�q1

q2�q1
is calculated.

In contrast to scaling by the maximum and minimum value, this ap-

proach is more robust to extreme outlying gene expression values.

This normalization procedure is applied internally when the in-

trinsic.cluster.predict function from the genefu package is used and

the model’s standardization (‘std’) parameter is set to ‘robust’. For

example, we can make PAM50 predictions using pre-packaged

models in genefu called pam50 or pam50.robust. The gene centroid

information is the same in both cases, but pam50 has std¼ ‘none’

and pam50.robust has std¼ ‘robust’. This means that if we apply in-

trinsic.cluster.predict with pam50, the test data will not be normal-

ized in any way, but if we use pam50.robust the quantile rescaling

procedure described above will be applied.

2.4 Estimating test set bias
We used two approaches to estimate test set bias. When considering

the PAM50 predictor, we simply applied the pre-defined prediction

model from the genefu package (Haibe-Kains et al., 2011) to make

predictions on our data.

To train a PAM model, we used 10-fold cross-validation. We

create a test set that is approximately 10% of the total data and use

the remaining 90% to train the model. We use the internal cross-

validation functions provided in the pamr package (Hastie et al.,

2014) to produce a shrinkage threshold and determine the number

of genes necessary to make predictions. We then apply this predictor

both in the test set, which comes from the same platform, and on

other microarray datasets that used different platforms. This process

is repeated within each of the cross-validation folds to get average

prediction accuracies and standard deviations. When predicting

tumor grade (1–3 with increasing severity), we restricted to patients

graded 1 or 3 as grade 2 is considered to be ambiguous.

3 Results

3.1 Normalization makes patient predictions depend on

other patients’ data
Consider the PAM50 signature (Parker et al., 2009). The class as-

signment for a new patient is made by calculating a measure of

closeness between the new patient and the average patient profile in

each possible class, then choosing the class that was closest to the

sample. For example, PAM50 consists of 50 genes and predicts five

classes, so each class centroid is a profile of the average expression

of each of the 50 genes within that class. The authors used correl-

ation as a measure of closeness for a given sample to each class cen-

troid, i.e. correlation is calculated between the 50 genes in the

patient sample and the 50 genes in each class centroid. This is the

step that necessitates suitable rescaling of the test data before predic-

tions are made.

We considered two scenarios, which illustrate how PAM50 can

produce varying subtype predictions for a particular patient when

Table 1. Baseline characteristics of curated dataset

Characteristic Summary

N 6297

Age (years) 57.29 (13.42)

RFS (years) 7.22 (4.86)

Tumor size (cm) 2.52 (1.43)

Node

þ 1871

– 2857

NA 1569

Gradea

1 525

2 1642

3 2226

NA 1904

ER

þ 3635

– 1556

NA 1106

PGR

þ 766

– 656

NA 4875

Her2

þ 496

– 1437

NA 4364

Subtypeb

Basal 1254

Her2 927

LumA 2007

LumB 1813

Normal 296

Her2, human epidermal growth factor receptor 2 status;

node, whether or not cancer has spread to lymph nodes; PGR,

progesterone receptor status; RFS, recurrence-free survival

time. Age, RFS and tumor size are given as means with stand-

ard deviations.
aBecause of the ambiguity of grade 2, we chose to build all

prediction models for grades 1 and 3 only.
bSubtypes as predicted by PAM50.
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the data for other patients used in normalization varies. We used

data from GSE7390 (n¼198), an experiment conducted using the

Affymetrix hgu133plus2 microarray. In each experiment, we nor-

malized the gene expression measurements in the test set to fall be-

tween 0 and 1.

First, we created predictions where we normalized all patients

together. Then we calculated predictions for the same patients

when normalized in smaller groups (n¼2,10,20,40,80,100,120)

and measured the agreement between the predictions for the exact

same patient when normalized with all patients versus a smaller sub-

set of patients. When normalized in small batches, the predictions

for the same patient changed compared with the case where all pa-

tients were normalized together (Fig. 2A).

Next we predicted on patient populations that varied in the dis-

tribution of estrogen receptor (ER) status, which is an important fac-

tor in breast cancer prognosis and treatment. Again we applied the

PAM50 predictor to the entire test set. Then we created subsets of

the entire test set with differing percentages of ER-negative patients

and applied the predictor to each subset. When the percentage of

ER-negative patients in the subset matched the percentage in the

entire test set, patient subtypes best agreed with the original predic-

tions on the entire test set. However, when the ER status of the other

patients in the test set varied, the predictions for the same patient

were often different (Fig. 2B).

3.2 Using gene ranks with unnormalized data produces

comparable accuracy
When PAM50 was proposed, the authors chose to calculate similar-

ity based on Spearman correlation (Parker et al., 2009). Spearman

correlation finds the correlation between the ranks of the two sets of

gene expression measurements rather than correlation between the

actual values. We hypothesized that this rank-based prediction

would be immune to some changes of scale across platforms and

other platform-specific artifacts. With traditional signatures, these

are precisely the reasons why normalization is necessary. To exam-

ine this preliminarily, we re-ran the process from the previous sec-

tion but simply did not normalize the data and relied on the internal

rank-based correlation calculation. We recreated Figure 2A and B

when the data were ‘unscaled’. These appear as Supplementary

Fig. 2. Predictions for an individual patient can change depending on how many and what type of patients are included in the normalization step. (A) We first pre-

dicted the PAM50 subtype on an entire set of patients (Affymetrix hgu133plus2; GSE7390; n¼198). We then took 100 random samples of patient subsets ranging

from 2 to 120 patients and predicted their subtypes with data normalization. We compared this newly predicted subtype to each patient’s originally predicted sub-

type and calculated agreement. Actual data are jittered and overlayed on the boxplot. We find that there is significant variation in percent concordance when a

small subset of patients is subtyped in comparison to the entire patient population. (B) From the same setup, we took 100 random samples each of 40 patients

and varied the percentage of ER-positive and ER-negative patients in the sample. That is, 0% on the X-axis corresponds to 0% (0/40) ER-negative patients and

100% (40/40) ER-positive patients in the sample. We then predicted subtypes on this subset and compared these newly predicted subtypes to the original predic-

tions. The average concordance is plotted with 6 1SE bands. We note that the original population is 32% ER negative (dashed green line), which is where we see

close to maximal concordance
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Figures SI and SII, and they show that the predictions remain con-

stant as sample size and ER status vary when the data are unnormal-

ized and a rank-based metric is employed.

To further evaluate this hypothesis, we used the previously pro-

posed PAM signature-building procedure (Tibshirani et al., 2002)

to build a genomic signature to predict tumor grade (a clinical quan-

tity indicating severity) using three datasets measured on different

platforms: GSE7390 (Affymetrix; n¼198), ISDB10845 (Agilent;

n¼337) and ISDB10278 (Illumina; n¼1992). We used 10-fold

cross-validation to train a model on a particular dataset, made pre-

dictions on the testing portion of that dataset and applied the trained

model to the two remaining datasets, which represent two different

platforms. We averaged over the 10-folds in each case to obtain

mean accuracy and standard deviation.

To make predictions, we used Spearman correlation to mimic

how the PAM50 signature is used (Parker et al., 2009). We predicted

new patient samples using our PAM signature for grade both with

and without normalization. The same set of genes and prediction

algorithm are used in both cases—the only difference is that in the

former we normalize the test set patient data, and in the latter, we

leave it unnormalized. We observed that the normalized and un-

normalized predictors performed similarly across platforms (Fig. 3).

Within-platform (Affy-Affy, Agilent-Agilent, Illumina-Illumina

in Fig. 3), there is no appreciable difference in the average accuracy

of predictions when the test data are normalized or unnormalized.

For Affy, the grade 1 and 3 average accuracies and standard devi-

ations (represented by error bars in the figure) when the data are

normalized are 0.92 (0.13) and 0.67 (0.17), respectively, when com-

pared with 0.92 (0.13) and 0.65 (0.16) when the data are unnormal-

ized. For Agilent, the relevant figures are 0.72 (0.32); 0.56 (0.05) for

normalized versus 0.72 (0.32); 0.65 (0.09) for unnormalized and for

Illumina 0.92 (0.06); 0.65 (0.05) versus 0.84 (0.08); 0.71 (0.06). In

all cases, the ranges of the unnormalized average accuracies substan-

tially overlap those of the normalized average accuracies. Results

across platforms (the off-diagonal grid entries in the figure) tell a

similar story. It is the case that if the scaled predictor performs better

on grade 1 than the unscaled, then the opposite will be true for grade

3 (see e.g. the Agilent-Illumina result). This is due to the fact that pa-

tients can be classified as either grade 1 or 3, so if the unscaled ver-

sion predicts more grade 3 than grade 1, the change in the respective

accuracies will be proportional. This analysis suggests that using the

PAM predictor for grade with Spearman correlation and without

normalizing the test set data produces similar predictive accuracy to

when the test set data are normalized.

4 Discussion

We found that breast cancer tumor subtype predictions varied for

the same patient when the data for that patient were processed using

differing numbers of patient sets and patient sets had varying distri-

butions of key characteristics (ER status). This is undesirable behav-

ior for a prediction algorithm, as the same patient should always be

assigned the same prediction assuming their genomic data do not

change. The fact that sample size affects normalized data values is

unsurprising, but the fact that classifications varied by how many

patients were ER� in the test set speaks to the generalizability of an

algorithm. Ideally, the test set should be ‘similar’ in composition to

the dataset upon which a classification algorithm was trained. The

result in Figure 2B is undoubtedly related to the fact that ERþ pa-

tients are different in terms of gene expression from ER� patients,

but we see that even slight perturbations in the ER composition of

the subpopulation can affect patient classifications. This raises the

question of how similar the test set needs to be to the training data

for classifications to be trusted when the test data are normalized.

The PAM50 signature uses Spearman correlation to assess dis-

tances when making predictions, so we leveraged this by comparing

how a PAM signature using Spearman correlation predicts tumor

grade outcomes with and without normalization. We found the re-

sults to be comparable, but the unnormalized approach guarantees

the same prediction for the same patient every time. A gene signa-

ture that employs rank-based features or makes other rank-based

calculations is one robust approach to avoiding test set bias.

Although all gene signature classifiers do not necessarily have a

Fig. 3. Average accuracy of scaled and unscaled predictions over different training and testing sets we trained a PAM model to predict tumor grade (either grade

1 or 3) using 10-fold cross-validation on one Affymetrix (GSE7390), Agilent (ISDB10845) and Illumina (ISDB10278) dataset each. The rows represent upon which

platform each model was trained, and the columns represent upon which platform each trained model was applied to make predictions. To get average accuracy

and standard deviations (error bars) for a particular platform, we use the model generated under each fold of the cross-validation to make predictions on the re-

maining test set of the same platform as well as the two other platforms. We applied this model after normalizing (‘scaled’) the data and after leaving it unnormal-

ized (‘unscaled’). We found that the accuracies for predicting grade were similar whether the data were normalized or unnormalized
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completely rank-based mode as PAM50 does, the broader implica-

tion of this result is that one may try to build predictors that operate

only on the ranks of data, thereby bypassing the need for any nor-

malization step when predicting on a test set.
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